The Second Prize Winner of the Second Annual Seed Science Writing Contest answers the question: What does it mean to be scientifically literate in the 21st Century?

When I was five, my mother tried bribing me to behave while she shopped. She handed me a toy plane as we passed through that aisle; I held the package tightly while we checked out. After we got to the car, my childish fingers attacked the plastic and pulled the die-cast jet from its marketing prison. The long, patient wait while Mom finished shopping had paid off. In my hands I held a brand-new replica of a Harrier jet. A brand-new replica Harrier that had one tail fin angled forty-five degrees out of true.

After some crying on my part, we gathered the packaging from the car floor and re-entered the store. One in-kind exchange later, I ripped apart another package only to find that this toy model had the same defect. The problem was not with the individual plane. The problem had occurred at the factory. All of the models had the same mistake. My mother said I should pretend it was turning left.

“All the time?” I wailed.

My mother, unlike my five-year-old self, knew not to take models so seriously. Models are inherently flawed; they are lesser than the original. Regardless, models can still be extremely useful. Newton’s model of gravity was enough for the Apollo missions, and what good is a 1:1 scale map?

Understanding that our scientific knowledge is “only” a model is the key to true scientific literacy. Knowing this tells us that our science has built-in limitations, but that it does resemble reality in very fundamental ways. More importantly, that understanding gives us permission to use our models when they are useful—and permission to discard them when they no longer meet our needs.

A literate person is not a walking dictionary, but someone who has enough knowledge about the language to be able to read. Being able to examine our models, critically evaluate them, and even discard them is far more scientifically literate than being able to regurgitate facts for a standardized test. Surely, a certain basic, fundamental knowledge is vital to avoid having to constantly return to Descartes. But as he found, even then, critical thinking is necessary to verify these fundamental “facts.” Ultimately, our models and descriptions of reality must be subject to two overriding criteria: How useful is this model, and how much does this model resemble our observations?

Scientific literacy requires an understanding that science is only a model. We have to be able to jettison our models when our critical thinking leads us to that conclusion.

Our society has largely lost that understanding. We desire immutable facts and constant certainties. We want clean, hard edges to our world and our knowledge about that world. Politicians, educators, and business leaders crave quantitative metrics that can be compared, compiled, and correlated. As agenda-driven pundits have attacked scientific thought, we have countered their extremism with our own. Both attackers and defenders blur the distinctions between theories, facts, and hypotheses.

A scientifically literate society knows none of that is necessary. The edifice of science is not in danger of crumbling; it is under constant renewal. Each generation’s orthodoxy was the prior’s heresy. Many commonly-accepted “facts”—plate tectonics, quantum mechanics, birds’ relation to dinosaurs, the Big Bang, RNA’s role in the cell, punctuated equilibrium, global climate change, good and bad cholesterol—were extremely controversial not so long ago. And the process continues, with ongoing challenges to accepted models both in their details and in their broad brushstrokes. It is understanding the inherent value of this uncertain interplay that is true scientific literacy. It is knowing that Newton, Galileo, or any of our forebearers were scientifically literate themselves, despite not having all the data that we have today. It is the difference between reciting spelling words and grokking e.e. cummings and Maya Angelou.

This deeper understanding of scientific literacy cannot be the responsibility of any one group, individual, or program. It is created and fostered by all aspects of a society; it rests on a systemic approach that requires change in all sectors. Perhaps grant applications could have less to do with politically-hot topics, or schools could have classes in critical thinking and sponsor mental competitions. News media might move away from immediate sensationalism not because of government admonition, but because of public demand. It will be difficult, for this kind of literacy is not easily measured. It can only be assessed by indirect methods: an increase in the frequency of competing theories, an increase in innovation and risk-taking.

There is a lot of work needed to fully shift our society to this postmodernist style of scientific literacy. Our sacred cows herd us away from competing theories. Sensationalism allows half-truths to perpetuate over water coolers. Our schools face huge funding inequalities, and abstract thought is routinely sacrificed on the altar of standardized testing. Critical, independent thought is rare in our culture: How similar do most politicians sound? True risk-taking is rare in our society: Just look at the sudden increase in movies featuring penguins.

But there is hope.

My son held up his birthday present, a yellow radio-controlled car. The whole interior was visible through the clear plastic windows. I noticed—with a brief spasm of horror—that there were no seats on the inside. The motor and batteries rested there instead. I remembered my long-ago Harrier jet, and began to apologize. He looked up at me with big, confused eyes.

“Dad, it doesn’t need seats. It has a motor and it looks like a car. It’s fine. If I need one with seats, I’ll make one out of Legos.” He pressed a lever on the controller. The little model car whirred down the sidewalk, moving very much like—but not identically to—a real car.

—Steven Saus is a nuclear medicine technologist at Miami Valley Hospital in Dayton, OH.

Originally published September 21, 2007

Tags limits literacy theory

Share this Stumbleupon Reddit Email + More

Now on SEEDMAGAZINE.COM

  • Ideas

    I Tried Almost Everything Else

    John Rinn, snowboarder, skateboarder, and “genomic origamist,” on why we should dumpster-dive in our genomes and the inspiration of a middle-distance runner.

  • Ideas

    Going, Going, Gone

    The second most common element in the universe is increasingly rare on Earth—except, for now, in America.

  • Ideas

    Earth-like Planets Aren’t Rare

    Renowned planetary scientist James Kasting on the odds of finding another Earth-like planet and the power of science fiction.

The Seed Salon

Video: conversations with leading scientists and thinkers on fundamental issues and ideas at the edge of science and culture.

Are We Beyond the Two Cultures?

Video: Seed revisits the questions C.P. Snow raised about science and the humanities 50 years by asking six great thinkers, Where are we now?

Saved by Science

Audio slideshow: Justine Cooper's large-format photographs of the collections behind the walls of the American Museum of Natural History.

The Universe in 2009

In 2009, we are celebrating curiosity and creativity with a dynamic look at the very best ideas that give us reason for optimism.

Revolutionary Minds
The Interpreters

In this installment of Revolutionary Minds, five people who use the new tools of science to educate, illuminate, and engage.

The Seed Design Series

Leading scientists, designers, and architects on ideas like the personal genome, brain visualization, generative architecture, and collective design.

The Seed State of Science

Seed examines the radical changes within science itself by assessing the evolving role of scientists and the shifting dimensions of scientific practice.

A Place for Science

On the trail of the haunts, homes, and posts of knowledge, from the laboratory to the field.

Portfolio

Witness the science. Stunning photographic portfolios from the pages of Seed magazine.

SEEDMAGAZINE.COM by Seed Media Group. ©2005-2012 Seed Media Group LLC. All Rights Reserved.

Sites by Seed Media Group: Seed Media Group | ScienceBlogs | Research Blogging | SEEDMAGAZINE.COM