Mapping the Brain’s Highways

Wide Angle / by Azeen Ghorayshi /

Neuroscientists are mapping out a complete atlas of connectivity in the human brain, but what’s emerging is a battle of scales.

“The human brain has been terra incognita for as long as we’ve known it,” says Olaf Sporns, a professor of neuroscience at Indiana University. In 2005, Sporns co-authored a paper attributing the large-scale shortcomings of comprehensive neuroscience research to a lack of a foundational, anatomical description of the brain: In order to properly navigate this “unknown land,” he said, we must first draw a map.

Sporns proposed calling this map the “connectome.” As a thorough atlas of the connections in the brain, the name deliberately conjures associations with the enormously successful human genome map that had been sequenced two years prior. Now, four years after Sporns’ initial paper, the National Institutes of Health Blueprint for Neuroscience Research is launching the $30 million Human Connectome Project (HCP) in hopes of creating a comprehensive map of a healthy adult brain by 2015.

The human brain is a composite organ, divided up into several hundred small areas with highly specialized functions. Viewed under a microscope, most of these centimeter-wide areas have visibly distinguishable cell patterns. Most importantly for the HCP, each of these areas is connected by millions of thread-like neuronal projections called axons that run together in parallel, winding to form long, bundled structures resembling thick fiber-optic cables. “These are the major highways, and they’re these beautiful spatially organized structures,” says Van Wedeen, an associate professor of radiology at Harvard Medical School, where he works on developing new brain imaging technologies. “How does the brain function?” Wedeen asks. “It’s all processes, and these processes occur because of connections between these specialized areas.”

The rationale behind the Human Connectome Project’s focus on these fiber bundles is that the different brain areas are believed to acquire their functional characteristics based on how they are connected to each other. “It’s the inputs and the outputs of a neuron that determine what its function is,” Sporns says. Thus, like so much in biology, structure directly defines function—neurons in close proximity will process the same kinds of information, and connectivity between these regions can inform us on how the broader processes operate.

While these brain sections and their connection pathways are visibly distinguishable, the fact that the structures of the brain overlap in three-dimensional space has made them almost impossible to model until very recently. Traditional observational techniques require using microscopes to view ultra-thin slices of tissue—messy business when trying to reconstruct three-dimensional structures in something as thick as a human brain. New imaging methods allow scientists to noninvasively observe the live brains of their human patients in two ways: as they perform tasks in functional imaging machines, enabling scientists to see which brain regions show simultaneous activation and thus imply connectivity, and in diffusion imaging scanners that model the pathways of the fiber bundles by recording water flow along the gradients of the cables. By attempting to match the data obtained from the two modalities, the neuroscientists can combine the correlational data with the anatomical data to, little by little, fit together the pieces of the puzzle.

“The reason we haven’t had this data before for the human is because we haven’t had the tools,” says Dr. Michael Huerta, associate director of the neuroscience division of the National Institutes of Mental Health (NIMH). “We’re at a really sweet spot because the technologies that exist right now are really just on the cusp of being able to do this in a systematic, high-throughput way.”

And yet, there are other neuroscientists for whom “connectome” has a different meaning altogether. While the NIH project attempts to map the large-scale connections between brain regions, some scientists want to pry deeper: They aspire to eventually map the human brain neuron by neuron, constructing a full “wiring diagram” of our most complex tissue at its most fine-grained. In some ways, the broader region-to-region approach of scientists like Sporns and Wedeen was a response to the daunting and, right now, technologically impossible goal of mapping the trillions of neuronal connections in the human brain. But some hard-liners went another route—sticking with the ambition of a neuron-by-neuron map, they’ve merely shifted their gaze to simpler organisms.

Thus far, the only complete neuronal connectome that has been mapped is that of the nematode Caenorhabditis elegans. Clocking in at 302 neurons, it is one of the simplest model organisms to possess a nervous system. The human brain, in contrast, is comprised of nearly 100 billion neurons. Technologies to visualize neurons in live subjects—as well as process such gargantuan volumes of data—do not yet exist, so only post-mortem studies in simpler organisms are even presently imaginable.

Scientists like Joshua Sanes, a professor of molecular and cell biology at Harvard, insist that despite these technological hurdles, the true answer to the connectome puzzle lies at the level of the neuron. Along with Jeff Lichtman, also a molecular and cell biology professor at Harvard, Sanes has pioneered some of the most detailed neuronal connectivity data to date. The two are currently working on new technologies for visualizing synapses in live animals. “Think of the connectome as an old radio: If you find out the amplifier is connected to the tuner, it doesn’t tell you how a tuner works—it just tells you what the tuner is connected to,” Sanes argues. “I think the ultimate goal of the cellular approach is to find out how the brain works in the sort of circuit diagram sense.”

But neuroscientists such as Sporns, while praising the accomplishments of Sanes and Lichtman as admirable, question the necessity of a neuron-to-neuron connectome. “If you want to describe the economy or some other complex social pattern out there, do you really need to know what every shopper is buying in the supermarket?” Sporns asks. For Sporns, the true value of the human connectome lies in the aggregate behavior of its parts.

Nevertheless, both parties agree that eventually the microscale and macroscale approaches will converge as one enormous data set, hopefully with the different layers of complexity informing each other. For now, the NIH hopes to accomplish its five-year goal of a completed region-to-region map by encouraging collaboration among neuroscientists, many of whom have spent years working on the problem in isolation, leading to some unverified techniques and little cross-checking of data.

“Before there was the Human Genome Project, people were studying gene sequences—they were just doing it a million different ways in a million different labs,” Huerta says. “The impact of the Human Genome Project cannot be overstated, and I think the Human Connectome Project will have a similar, transformative impact on neuroscience.”

Mapping the human connectome will rely on a descriptive rather than empirical approach to research, revitalizing classic debates of the value of induction versus deduction in the sciences. Regardless, these ambitious scientists firmly believe a completed map will provide an indispensable foundation for all future neuroscience research. “Yes it’s descriptive, yes it’s a fishing expedition,” Sporns says. “But that’s how you catch fish.”

Originally published August 11, 2009

Tags complexity neuroscience scale theory

Share this Stumbleupon Reddit Email + More

Now on SEEDMAGAZINE.COM

  • Ideas

    I Tried Almost Everything Else

    John Rinn, snowboarder, skateboarder, and “genomic origamist,” on why we should dumpster-dive in our genomes and the inspiration of a middle-distance runner.

  • Ideas

    Going, Going, Gone

    The second most common element in the universe is increasingly rare on Earth—except, for now, in America.

  • Ideas

    Earth-like Planets Aren’t Rare

    Renowned planetary scientist James Kasting on the odds of finding another Earth-like planet and the power of science fiction.

The Seed Salon

Video: conversations with leading scientists and thinkers on fundamental issues and ideas at the edge of science and culture.

Are We Beyond the Two Cultures?

Video: Seed revisits the questions C.P. Snow raised about science and the humanities 50 years by asking six great thinkers, Where are we now?

Saved by Science

Audio slideshow: Justine Cooper's large-format photographs of the collections behind the walls of the American Museum of Natural History.

The Universe in 2009

In 2009, we are celebrating curiosity and creativity with a dynamic look at the very best ideas that give us reason for optimism.

Revolutionary Minds
The Interpreters

In this installment of Revolutionary Minds, five people who use the new tools of science to educate, illuminate, and engage.

The Seed Design Series

Leading scientists, designers, and architects on ideas like the personal genome, brain visualization, generative architecture, and collective design.

The Seed State of Science

Seed examines the radical changes within science itself by assessing the evolving role of scientists and the shifting dimensions of scientific practice.

A Place for Science

On the trail of the haunts, homes, and posts of knowledge, from the laboratory to the field.

Portfolio

Witness the science. Stunning photographic portfolios from the pages of Seed magazine.

SEEDMAGAZINE.COM by Seed Media Group. ©2005-2012 Seed Media Group LLC. All Rights Reserved.

Sites by Seed Media Group: Seed Media Group | ScienceBlogs | Research Blogging | SEEDMAGAZINE.COM