Emotion’s Alchemy

Feature / by Genevieve Wanucha /

New insights into the science of emotion unravel the seeming neurological magic that turns emotions into social expressions.

Page 3 of 3

Credit:  Jacques Gabay Donio

Josef Parvizi’s former professor back in Iowa was Antonio Damasio, who is now a neuroscientist at the University of Southern California. He has long been determined to understand how circumstances trigger emotions and how emotions then become feelings, as they do in actors and everyone else. He developed today’s leading theory of emotion, the somatic marker hypothesis, which builds on those of the giants before him, such as Carl Lange and William James, the scholars who first noted that feelings arose from perceptions of our body state. Of course, as Damasio’s more nuanced research methods have revealed, it is a bit more complicated than that.

To distinguish between human emotion and feeling, Damasio starts at the beginning. He sees emotion as a package of survival tools that originally evolved to help living beings navigate their environment safely, providing bodily warnings of dangerous situations. These responses later evolved to cause positive and negative feelings, which extended the impact of emotions by leaving a permanent stamp on memory. Over millions of years, this feedback process between organism and environment birthed foresight, and eventually, the human ability to respond to situations creatively.

Emotions familiar to us, such as happiness or anger, require an initial stimulus, a sight, smell, or memory. Physical changes follow. Feelings unfurl. Stimuli can even be simple actions. Back in 1992, Psychologist Paul Ekman found that voluntary smiles and grimaces produce changes in the autonomic nervous system. His study participants actually began to feel happy or sad or angry after following instructions to set their facial muscles in certain positions. “Psychologically unmotivated and ‘acted’ emotional expressions have the power to cause feeling,” Damasio writes. Enter the actress.

Once More, with Feeling
Sheila Donio first attempted to cry onstage as the character “Rizzo” in a stage production of Grease in 2001. She has acted since childhood and settled into professional acting career as a teenager in São Paulo, Brazil. “As I knew I wanted to cry on a specific scene,” she explained, “I started to work on Rizzo’s emotions at home, listening to the song used right before my crying scene. Studying Rizzo’s emotions with that specific soundtrack made my brain connect one thing with the other.” Method acting, techniques devised in the 1930s by Constantin Stanislavski, and later adapted by director Lee Strasberg, emphasize this use of sense memory. Students of this method learn to use personal memories of sensory details to trigger authentic physiological reactions.

Teaching herself, Sheila used this process to tap into the pathways of her brain responsible for the generation of crying. Crying on command became second nature. “Every time I heard that song, I would start to feel her anxieties and frustrations and the buttons for crying would show up in my body, ready to be pressed.” In fact, Sheila’s method of manipulating her body’s physiology is a living demonstration of Damasio’s theory of emotion.

In 2000, Damasio and his colleagues published the results of a landmark study in the field of emotion and feeling. The team asked 41 individuals to recall a particularly vivid emotional episode of their lives, memories charged with happiness, sadness, anger, or fear. (In a prior screening session, only the participants proven to experience emotional changes when recalling previous events were chosen.) Hooked up to a PET scanner, which detects specific activity in brain regions, the participants re-lived the chosen experience. As instructed, they each made a hand movement when they began to feel the anger, happiness, or sadness.

Electrodes measuring the volunteers’ physiological phenomena —things like heart rate and sweat levels in skin—registered drastic changes before the hands were raised. In other words, Damasio’s team found that people reported feeling emotional only after the eruption of a physical emotion. “It’s very important for you to think of emotion as an action, so crying is a component of emotion, never as a part of feeling. Feeling is a perception of the action we have,” he told me. Of course, only tears give Sheila confirmation that conjuring the emotionally tinted memory of Rizzo’s song, or “pushing her buttons for crying,” can trigger an authentic emotional cascade.

In that same study, Damasio found that the body-sensing region of the brain, the somatosensory cortex, came online as the feelings arose. Later, in 2006, he reported that for each basic emotion (e.g., happiness, sadness, anger, and fear) there is a distinct cardio-respiratory pattern. Linking these data sets together, in a technology-age tweaking of the James-Lange theory, Damasio suggests that feelings arise from “maps” continually forming in brain regions such as the somatosensory cortex. The brain doesn’t have simple “on” and “off “emotional switches. It is always in flux. Feelings are more than the brain’s perception of emotion; they are a constant process of mapping shifting body states.

Sheila makes daily use of those “maps.” “I study how my body reacts when I am crying for real, in real life. It’s all about breathing, for me. I get myself on the highway that leads me to cry. When I do improv theatre, this is how I find my emotions in 30 seconds,” she said. As Sheila adjusts her inhalations and exhalations, her somatosensory cortex detects the body map for crying. Genuine sadness follows the tears. The tears amplify the feelings, triggering sharper emotion, creating a positive feedback loop. What Sheila describes as a “highway,” Damasio thinks of more as a two-way traffic rotary.

Emotion in acting is not all about conjuring tears through physiological manipulations and memory recall. The audience in the back row needs to recognize the crying or joyous body just as intensely the people in the front row. That’s why the performer must play to the visual brain, or the mirrors reflecting within it.

Our brains can “mirror” the actions of those we watch. We feel our muscles clench when we watch a figure skater twist in the air, or when we crack a smile as a stage performer grins. That’s the work of the proposed “human mirror neuron network,” part of our visual brain. Basically, swaths of neurons in the human premotor cortex activate both when we are performing an action and watching someone else perform that action. The young science of our mirroring ability is rapidly gaining a spot in emotional neurobiology. After all, “motion” and “emotion” live just one letter apart.

In 1995, Vittorio Gallese of Parma University in Italy discovered mirror neurons in macaque monkeys. His continued explorations of mirroring behavior have most recently focused on the contagious nature of action and sound. He had a professional actor and actress perform sorrow and joy without uttering words—laughing and crying. He showed other participants silent versions of the actors’ embodiments and recorded the movement of their facial muscles. In a second condition, the participants heard only the sound of laughing or crying. “The results are pretty interesting,” he reported at a mirror neuron conference in 2007. “If you see someone laughing, you have strong activation of your zygomatic muscle, which is active when you laugh. If you see someone crying, you have an activation of the corrugator supercili. The same results are obtained with sound.” So, whether we hear laughing or crying, or watch the actions in silence, our smiling and frowning muscles automatically begin to respond. In essence, our emotions are contagious.

Sophie Scott, neuroscientist at University College of London, pressed ‘play’ on her iTunes and a cacophony of laughter and shrieks (as well as gagging and groans) attacked the air, causing both our faces to cringe and smile. In 2006, these were the sound samples used in a study into emotional mirroring. Twenty subjects listened to the samples, both positive and negative emotional vocalizations, while their brains were scanned with fMRI. They were told not to move their faces.

She was looking into the brain’s premotor cortex, a slice of which houses the neurons that control those facial expression muscles of smiling or laughing, the ones actors use so much. Her research team analyzed the participants’ brain activation while they heard the amused sounds. The disgust sounds were used as controls this time. Even though they were not actually smiling or laughing, the predicted slice of premotor cortex became active when the subjects heard the delight noises. These participants were experiencing other people’s apparent happiness through sound alone. In essence, their brains were starting to share a laugh.

This brings us back to Shakespeare’s cogent demand: ‘Tell me where fancy is bred/ Or in the heart, or in the head?’ Always immersed in theatre, he knew implicitly that authentic exuberance involved no forced smiles, but instead pink cheeks, watery eyes, and quickened breath. The evidence stood in front of him. Hundreds of years later, the technology of neuroscience provides a more complicated answer. Bodily emotion and moody feelings, head and heart, are constantly intertwined, reciprocal, looping processes. They do not exist separately. Once made visible, emotion’s expression requires some exacting architecture. This neurological machinery operates without permission, exposing our feelings to others. Still, to see how far fancy can travel outside the body, we’ve never needed fMRI scans. Just smile as you pass someone on the sidewalk and watch for the smile back.

Originally published March 30, 2010

Page 3 of 3

Tags cognition culture neuroscience social science

Share this Stumbleupon Reddit Email + More


  • Ideas

    I Tried Almost Everything Else

    John Rinn, snowboarder, skateboarder, and “genomic origamist,” on why we should dumpster-dive in our genomes and the inspiration of a middle-distance runner.

  • Ideas

    Going, Going, Gone

    The second most common element in the universe is increasingly rare on Earth—except, for now, in America.

  • Ideas

    Earth-like Planets Aren’t Rare

    Renowned planetary scientist James Kasting on the odds of finding another Earth-like planet and the power of science fiction.

The Seed Salon

Video: conversations with leading scientists and thinkers on fundamental issues and ideas at the edge of science and culture.

Are We Beyond the Two Cultures?

Video: Seed revisits the questions C.P. Snow raised about science and the humanities 50 years by asking six great thinkers, Where are we now?

Saved by Science

Audio slideshow: Justine Cooper's large-format photographs of the collections behind the walls of the American Museum of Natural History.

The Universe in 2009

In 2009, we are celebrating curiosity and creativity with a dynamic look at the very best ideas that give us reason for optimism.

Revolutionary Minds
The Interpreters

In this installment of Revolutionary Minds, five people who use the new tools of science to educate, illuminate, and engage.

The Seed Design Series

Leading scientists, designers, and architects on ideas like the personal genome, brain visualization, generative architecture, and collective design.

The Seed State of Science

Seed examines the radical changes within science itself by assessing the evolving role of scientists and the shifting dimensions of scientific practice.

A Place for Science

On the trail of the haunts, homes, and posts of knowledge, from the laboratory to the field.


Witness the science. Stunning photographic portfolios from the pages of Seed magazine.

SEEDMAGAZINE.COM by Seed Media Group. ©2005-2015 Seed Media Group LLC. All Rights Reserved.

Sites by Seed Media Group: Seed Media Group | ScienceBlogs | Research Blogging | SEEDMAGAZINE.COM