The Future of Science…Is Art?

Fourth Culture / by Jonah Lehrer /

To answer our most fundamental questions, science needs to find a place for the arts.

Composition No. 8, 1939-1942
PIET MONDRIAN

Mondrian, in search of “the constant truths concerning forms,” settled on the straight line as the major feature of his compositions. He believed that straight lines are constituents of all forms. Many years later, physiologists discovered orientation-selective cells, which respond selectively to straight lines, and are widely thought to be the physiological “building blocks” of form perception. Each cell responds increasingly more grudgingly when exposed to images that depart from the preferred orientation, until the response disappears altogether at the orthogonal orientation.—Semir Zeki, Neuroscientist, University College London © Kimbell Art Museum/Corbis

Of course, the standard response of science is that such art is too incoherent and imprecise for the scientific process. Beauty isn’t truth; Monet got lucky. The novel is just a work of fiction, which is the opposite of experimental fact. If it can’t be plotted on a line graph or condensed into variables, then it’s not worth taking into account. But isn’t such incoherence an essential aspect of the human mind? Isn’t our inner experience full of gaps and non-sequiturs and inexplicable feelings? In this sense, the messiness of the novel and the abstraction of the painting is actually a mirror. As the poetry critic Randall Jarrell put it, “It is the contradictions in works of art which make them able to represent us—as logical and methodical generalizations cannot—our world and our selves, which are also full of contradictions.”

No scientific model of the mind will be wholly complete unless it includes what can’t be reduced. Science rightfully adheres to a strict methodology, relying on experimental data and testability, but this method could benefit from an additional set of inputs. The cultural hypotheses of artists can inspire the questions that stimulate important new scientific answers. Until science sees the brain from a more holistic perspective—and such a perspective might require the artistic imagination—our scientific theories will be detached from the way we see ourselves.

Neuroscience, of course, believes that it has no inherent limitations. One day, a team of scientists may explain human consciousness. The bridging principle will be solved. The mystery of experience will turn out to be another trick of matter. Such scientific optimism might be right. Only time will tell. (It’s worth noting that not every scientist is quite so optimistic. Noam Chomsky, for example, has declared that, “It is quite possible—overwhelmingly probable, one might guess—that we will always learn more about human life and personality from novels than from scientific psychology.”) Regardless, it’s clear that solving the deepest mysteries of the brain—what the philosopher David Chalmers calls “the hard questions of consciousness”—will require a new scientific approach, one that is able to incorporate the wisdom of the arts. We are such stuff as dreams are made on, but we are also just stuff. Neither truth, when seen alone, is our solution, for our reality exists in plural.

At first glance, physics seems particularly remote from the subjective sphere of the arts. Its theories are extracted from arcane equations and the subatomic debris of supercolliders. This science continually insists that our most basic intuitions about reality are actually illusions, a sad myth of the senses. Artists rely on the imagination, but modern physics exceeds the imagination. To paraphrase Hamlet, there are more things in heaven and earth—dark matter, quarks, black holes—than could ever be dreamt up. A universe this strange could only be discovered.

But the surreal nature of physics is precisely why it needs the help of artists. The science has progressed beyond our ability to understand it, at least in any literal sense. As Richard Feynman put it, “Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are not really there, but just to comprehend those things which are there.” It’s a brute fact of psychology that the human mind cannot comprehend the double-digit dimensions of string theory, or the possibility of parallel universes. Our mind evolved in a simplified world, where matter is certain, time flows forward and there are only three dimensions. When we venture beyond these innate intuitions, we are forced to resort to metaphor. This is the irony of modern physics: It seeks reality in its most fundamental form, and yet we are utterly incapable of comprehending these fundaments beyond the math we use to represent them. The only way to know the universe is through analogy.

As a result, the history of physics is littered with metaphorical leaps. Einstein grasped relativity while thinking about moving trains. Arthur Eddington compared the expansion of the universe to an inflated balloon. James Clerk Maxwell thought of magnetic fields as little whirlpools in space, which he called vortices. The Big Bang was just a cosmic firecracker. Schrödinger’s cat, trapped in a cosmic purgatory, helped illustrate the paradoxes of quantum mechanics. It’s hard to imagine string theory without its garden hose.

These scientific similes might seem like quaint oversimplifications, but they actually perform a much more profound function. As the physicist and novelist Alan Lightman writes, “Metaphor in science serves not just as a pedagogical device, but also as an aid to scientific discovery. In doing science, even though words and equations are used with the intention of having precise meaning, it is almost impossible not to reason by physical analogy, not to form mental pictures, not to imagine balls bouncing and pendulums swinging.” The power of a metaphor is that it allows scientists imagine the abstract concept in concrete terms, so that they can grasp the implications of their mathematical equations. The world of our ideas is framed by the only world we know.

But relying on metaphor can also be dangerous, since every metaphor is necessarily imperfect. (As Thomas Pynchon put it, “The act of metaphor is a thrust at truth and a lie, depending on where you are.”) The strings of the universe might be like a garden hose, but they are not a garden hose. The cosmos isn’t a plastic balloon. When we chain our theories to ordinary language, we are trespassing on the purity of the equation. To think in terms of analogies is to walk a tightrope of accuracy.

Tags creativity enhancement information

Share this Stumbleupon Reddit Email + More

Now on SEEDMAGAZINE.COM

  • Ideas

    I Tried Almost Everything Else

    John Rinn, snowboarder, skateboarder, and “genomic origamist,” on why we should dumpster-dive in our genomes and the inspiration of a middle-distance runner.

  • Ideas

    Going, Going, Gone

    The second most common element in the universe is increasingly rare on Earth—except, for now, in America.

  • Ideas

    Earth-like Planets Aren’t Rare

    Renowned planetary scientist James Kasting on the odds of finding another Earth-like planet and the power of science fiction.

The Seed Salon

Video: conversations with leading scientists and thinkers on fundamental issues and ideas at the edge of science and culture.

Are We Beyond the Two Cultures?

Video: Seed revisits the questions C.P. Snow raised about science and the humanities 50 years by asking six great thinkers, Where are we now?

Saved by Science

Audio slideshow: Justine Cooper's large-format photographs of the collections behind the walls of the American Museum of Natural History.

The Universe in 2009

In 2009, we are celebrating curiosity and creativity with a dynamic look at the very best ideas that give us reason for optimism.

Revolutionary Minds
The Interpreters

In this installment of Revolutionary Minds, five people who use the new tools of science to educate, illuminate, and engage.

The Seed Design Series

Leading scientists, designers, and architects on ideas like the personal genome, brain visualization, generative architecture, and collective design.

The Seed State of Science

Seed examines the radical changes within science itself by assessing the evolving role of scientists and the shifting dimensions of scientific practice.

A Place for Science

On the trail of the haunts, homes, and posts of knowledge, from the laboratory to the field.

Portfolio

Witness the science. Stunning photographic portfolios from the pages of Seed magazine.

SEEDMAGAZINE.COM by Seed Media Group. ©2005-2015 Seed Media Group LLC. All Rights Reserved.

Sites by Seed Media Group: Seed Media Group | ScienceBlogs | Research Blogging | SEEDMAGAZINE.COM