What Seashells Tell

New Ideas / by Michael Eisenstein /

The growth and pigment of a seashell is controlled by a network of nerve cells. Modeling this process is giving us insight into neural networks and even human memory.

Starting from a slender, tapered shard, the shell of the Conus gloriamaris grows gradually outward in a lazy spiral, flaring out as it wraps itself in layer after layer of gleaming tan-and-white marbling. The meticulous design of a seashell has long been a source of fascination for mathematicians, but the biological process involved has remained mysterious. Equipped with a new understanding of how mollusks use an extensive network of nerve cells to coordinate precise deposits of shell material and pigment, researchers can now simulate the growth of almost any seashell on a computer. And while this may delight molluscophiles, the significance is broad: This advance marks a triumphant cross-pollination between mathematics and biology that is also yielding important insights into how complex neural networks interact and communicate.

Image courtesy Alistair Boettiger

In the 80s, George Oster, a biophysicist at the University of California at Berkeley, and Bard Ermentrout, a mathematician at the University of Pittsburgh, developed a model for seashell growth and pigmentation based on the premise that a highly interconnected network of neurons controls the process. Unfortunately, Oster and Ermentrout lacked sufficient experimental evidence to confirm their theory. German researcher Hans Meinhardt found some success using an alternative model in which secreted chemicals that diffuse throughout the mollusk’s mantle — a tongue-like protrusion responsible for shell construction — govern these activities and turn pigment production on or off in different cells. But the results weren’t completely satisfactory. “Meinhardt could write these models that would produce beautiful pictures of shells,” says Oster. “The only problem is, he had to have a different model for every shell, and nobody has ever found these diffusing and reacting substances.”

More recent experimental findings have given new life to the neurosecretory model, however, including recent findings suggesting that the mantle uses pigment patterns in the shell as a “diary” of past shell-building activity. During shell construction, the mantle is always extended just a bit beyond the lip of the shell, inspecting its prior handiwork; Oster and Ermentrout hypothesized that pigment patterns from days past are scanned and interpreted by the mantle’s nerve network, triggering waves of excitation and inhibition that yield detailed instructions for the next round of construction. “What the mantle is doing is ‘tasting’ back in time,” says Oster, “so it can predict what it should do the next day and so that the pattern will be continuous.”

By charting these discrete patterns of neural excitation and inhibition, Oster and Ermentrout were able to build a mathematical model for shell formation that accounts for virtually any design observed in nature, from the zigzagging lines of Natica communis to the seemingly random patterns of mottled patches on a cone snail’s shell. “A single equation is sufficient to explain this tremendous diversity of patterns,” says Alistair Boettiger, a Berkeley graduate student who developed a computational modeling program for Oster and Ermentrout based on their findings. The team has modeled more than 30 shell types, and in each case the simulation bears a striking resemblance to the real thing. The program is even able to compensate for changes in growth and patterning caused by scratches and scrapes picked up in a mollusk’s tumultuous life at sea.

Just as pioneering experiments with oversize squid neurons in the 1940s and 50s established much of the foundation for modern neuroscience, Oster believes that modeling simple neural processes may have much broader implications for the field. For example, the primitive form of “memory” observed in mollusk neural networks might help researchers to decipher how far more sophisticated networks in the human brain enable us to use prior experience to build a picture of our world. To deepen their understanding, the team is now turning their attention to the cuttlefish, which rapidly changes colors and patterns.. “The patterns are very dynamic, and instead of taking months to form, they do it in a millisecond,” Oster says, “but it’s the same kind of nervous net, and it’s working in very much the same way.”

The neural origins of shell structure and pattern in aquatic mollusks
Proceedings of the National Academy of Sciences of the United States February 13, 2009

Originally published May 8, 2009

Tags ecology neuroscience research systems

Share this Stumbleupon Reddit Email + More

Now on SEEDMAGAZINE.COM

  • Ideas

    I Tried Almost Everything Else

    John Rinn, snowboarder, skateboarder, and “genomic origamist,” on why we should dumpster-dive in our genomes and the inspiration of a middle-distance runner.

  • Ideas

    Going, Going, Gone

    The second most common element in the universe is increasingly rare on Earth—except, for now, in America.

  • Ideas

    Earth-like Planets Aren’t Rare

    Renowned planetary scientist James Kasting on the odds of finding another Earth-like planet and the power of science fiction.

The Seed Salon

Video: conversations with leading scientists and thinkers on fundamental issues and ideas at the edge of science and culture.

Are We Beyond the Two Cultures?

Video: Seed revisits the questions C.P. Snow raised about science and the humanities 50 years by asking six great thinkers, Where are we now?

Saved by Science

Audio slideshow: Justine Cooper's large-format photographs of the collections behind the walls of the American Museum of Natural History.

The Universe in 2009

In 2009, we are celebrating curiosity and creativity with a dynamic look at the very best ideas that give us reason for optimism.

Revolutionary Minds
The Interpreters

In this installment of Revolutionary Minds, five people who use the new tools of science to educate, illuminate, and engage.

The Seed Design Series

Leading scientists, designers, and architects on ideas like the personal genome, brain visualization, generative architecture, and collective design.

The Seed State of Science

Seed examines the radical changes within science itself by assessing the evolving role of scientists and the shifting dimensions of scientific practice.

A Place for Science

On the trail of the haunts, homes, and posts of knowledge, from the laboratory to the field.

Portfolio

Witness the science. Stunning photographic portfolios from the pages of Seed magazine.

SEEDMAGAZINE.COM by Seed Media Group. ©2005-2015 Seed Media Group LLC. All Rights Reserved.

Sites by Seed Media Group: Seed Media Group | ScienceBlogs | Research Blogging | SEEDMAGAZINE.COM